
 noForth website

How noForth is made
noForth is a standalone forth for MSP430 (and RISC-V)

1. What is needed?
2. What to do?
3. The target code
4. Image building
5. x-words
6. Our own meta-interpreter
7. Natural order of definitions
8. Doers
9. The metacompiler is completed

before metacompiling starts
10. Late binding
11. Two reusable labels
12. A closer look at "Image building"
13. Added november 2017:

The kangaroo method

(Albert Nijhof, september 2014, november 2017, november 2020)

http://home.hccnet.nl/anij/nof/noforth.html

How noForth is made

1. What is needed?

The target code (written in noForth) that describes the whole noForth
The meta code (written in forth) that will include also the MSP430 meta assembler
(cross assembler)
A standard 32bit forth on the host computer

2. What to do?

Include the meta code on the host computer (for example in Win32forth).
Then include the target code.

You will be asked to choose your processor+board. Then the
meta compiler converts the target code into a binary image of
noForth. That image is saved as an intel-hex file.

The intel-hex file can be sent to the chip with a programmer.

3. The target code

The target code defines noForth "in terms of itself".
At first sight this seems nonsense but we use a metacompiler (an auxiliary noForth in the
host forth) that is able to convert the target code into a noForth image for the MSP430.

\ Examples of target code

code DUP tos sp -) mov NEXT end-code
code DROP sp)+ tos mov NEXT end-code
code ! sp)+ tos) mov
 sp)+ tos mov NEXT end-code

20 CONSTANT BL
: SPACE (--) bl emit ;
: SPACES (n --) false ?do space loop ;
: TYPE (a n --) false ?do count emit loop drop ;

VARIABLE BASE
VARIABLE STATE
: DECIMAL 0A base ! ;
: [(--) false state ! ; IMMEDIATE
:] (--) true state ! ;

: CHAR (<name> -- ch) bl word count 0= ?abort c@ ;
: [CHAR] (<name> --) char postpone literal ; IMMEDIATE
: MS (n --) 0 ?do ms) 0 ?do loop loop ;
: REPEAT postpone again postpone then ; IMMEDIATE

4. Image building

The binary image of noForth is being built while the metacompiler is interpreting the
target code. The metacompiler is able to look up words in the growing image. Of course
the noForth words in the image can not be executed on the host computer.

First, let's take the blue words in the example above. These words (and numbers) must
be compiled into noForth colon definitions. A word can be compiled only when:

(a) it already exists in the image,
(b) it is not immediate and
(c) STATE is true.

The red words are executed by the metacompiler: immediate words within colon
definitions and words not in colon definities.

And the green words? - Green text is handled by the preceding red word, not by the
metacompiler itself.

5. x-words

Probably all red words already exist in the host forth but most of them are useless for the
metacompiler.
Example: host forth headers differ from noForth headers, so the red ":" has to do other
things than the original ":" in the host forth.
Therefore we have to redefine the red words in such a way that they will behave like
noForth words. In fact we make an (incomplete) noForth simulator on the host
computer. That's not really hard, but a very confusing problem arises: conflicting names.
Our solution is very simple and brute: we put an "x" before the names of redefined red
words. So we get:
x; x: xCODE xLOOP xIF xVARIABLE xIMMEDIATE etc.

When all the necessary x-words are defined we put them, without the "x", in a
vocabulary META.

VOCABULARY META
ONLY FORTH ALSO META DEFINITIONS FORTH
: : x: ;
: ; x; ;
: CODE xCODE ;
: LOOP xLOOP ;
: IF xIF ; etc.

The red words end up in the META vocabulary with their normal names while META is
not in the search-order. This approach seems a bit clumsy and not very elegant, but it is
effective and above all: the code remains clear and easy to read.

Why not define the red words right away into META? - Because red words often contain
other red words and that would require a lot of vocabulary juggling.
Keep it simple is the motto.

6. Our own meta-interpreter

Interpreting the target code (the red and blue words) becomes simple if we don't use the
host forth interpreter, but write our own interpreter instead.

\ The metacompiler
: WINTERPRET (bl-word --) \ Interpret one word
 xSTATE @
 IF search-word-in-image \ Using xFIND
 found?
 IF not-immediate?
 IF xCOMPILE, EXIT
 THEN
 THEN
 THEN
 search-word-in-meta \ Using SEARCH-WORDLIST
 found?
 IF EXECUTE EXIT
 THEN
 is-it-a-number?
 IF xSTATE @ IF xLITERAL THEN EXIT
 THEN
 Error ;

: METACOMPILING BEGIN BL WORD WINTERPRET AGAIN ;

This metacompiler as such is straightforward and the task to build a noForth from the
target code is now divided into a lot of relatively small problems: (re)defining all red
words that appear in the target code.

The target code starts with the word :::NOFORTH::: that activates the metacompiler.
The word ;;;NOFORTH;;; at the end of the target code stops the metacompiler.

7. Natural order of definitions

The definitions in the target code appear in the natural forth order, a blue word must
already exist in the image before it can be compiled in a colon definition. We made this
choice because consequently no registration of addresses that must be filled afterward is
needed. This can be problematic for defining words, but we solve that by giving DOES>
parts a name.

8. Doers

See also "The kangaroo method" in chapter 13.

In the target code the named DOES> part, the doer, is defined apart from and long
before the CREATE action of the defining word.
:DOER ccc
CODEDOER ccc

defines a doer in high level forth, replaces DOES>
defines a doer in assembler, replaces ;CODE

:DOER DOCON @ ;
CODEDOER DOCOL ip push w ip mov NEXT end-code

20 CONSTANT BL
: SPACE BL EMIT ;

\ And later on in the target code
: CONSTANT CREATE DOCON , ;
: : CREATE DOCOL ... ;

As soon as DOCOL and DOCON do exist in the image, the metacompiler is able to build
colon definitions and constants in the image.

A doer is a data word. The doer body contains the DOES> routine (the "data"). A doer
(when executed) puts its body address in the CF of the newest word. This method makes
it possible to metacompile noForth with only one or two forward references, not
regarding the jump forward within colon definitions (IF WHILE ELSE).

A side effect is that a noForth decompiler easily detects word types.

9. The metacompiler is completed before metacompiling
starts

Nothing is added to the metacompiler during the metacompiling process, the
knowledge in the red meta words and the possibility to look up things in the image,
must be enough.
There is no confusing intermingling of host compiling and target compiling.
It means too that we can put the noForth image in the dictionary space of the host forth
(The host C, HERE and ALLOT can be used for image building).

10. Late binding

At the moment that xCONSTANT is defined as a red word in the meta code the address of
DOCON is not known. We put "DOCON" as a string in the xCONSTANT definition, not its
address.
: xCONSTANT xCREATE DOCON x, ;

becomes something like:
: xCONSTANT xCREATE xDOER" DOCON" x, ;

Every time the red CONSTANT is executed xDOER" DOCON" must look up DOCON in the
image. Thus it happens in all red defining words and also in the compiling red words as
LITERAL ." S" DO ?DO LOOP +LOOP POSTPONE ?ABORT

At compile time the words they compile must be searched in the image.

11. Two reusable labels

AMTSTERDAM and ROTTERDAM are two labels. They can be used again and again. With
them we can jump to code fragments that we want to reuse.
LABEL-AMSTERDAM puts the address where we are into the label, AMSTERDAM puts that
address on the stack. The same with ROTTERDAM.

code TRUE tos sp -) mov
 LABEL-AMSTERDAM #-1 tos mov NEXT end-code
code FALSE tos sp -) mov
 LABEL-ROTTERDAM #0 tos mov NEXT end-code
code = sp)+ tos cmp =? ROTTERDAM label-until,
 AMSTERDAM jmp end-code
code MIN sp)+ w mov tos w cmp
 LABEL-AMSTERDAM >? if, w tos mov then,
 NEXT end-code
code MAX sp)+ w mov w tos cmp
 AMSTERDAM jmp end-code

12. A closer look at "Image building"

The metacompiler is able to show how the image grows. The word TRACE activates and
NOTRACE deactivates this function. Put these words around a few definitions in the target
code and you can study in detail how the image is being built. This was our debugger.
Use the space bar for wait/continue.
Three xamples:
a.

trace
forth: : .S (--)
 ?stack (.) space
 depth false
 ?do depth i - 1- pick
 base @ 0A = if . else u. then
 loop ;
notrace

The output:
E55A forth: ()
E55A : ()
E55A <<<<< .S >>>>>
E55A E49E , E55A 0208 ! ()
E55C 81 c, 82 c, ".S" m, DOCOL C176 , (44)
E562 ((44)
E562 ?stack D1F4 , (44)
E564 (.) D58A , (44)
E566 space CF8E , (44)
E568 depth D2C8 , (44)
E56A false C7C2 , (44)
E56C ?do ?DO(C2C4 , 0000 , (44 E56E 33)
E570 depth D2C8 , (44 E56E 33)
E572 i C326 , (44 E56E 33)
E574 - C9E0 , (44 E56E 33)
E576 1- C9A4 , (44 E56E 33)
E578 pick C738 , (44 E56E 33)
E57A base C438 , (44 E56E 33)
E57C @ C578 , (44 E56E 33)
E57E 0A 0015 , (44 E56E 33)
E580 = C7D4 , (44 E56E 33)
E582 if 8FFF , (44 E56E 33 E582 11)
E584 . D104 , (44 E56E 33 E582 11)
E586 else 7FFF , 8805 E582 ! (44 E56E 33 E586 11)
E588 u. D0F6 , (44 E56E 33 E586 11)
E58A then 7803 E586 ! (44 E56E 33)
E58A loop LOOP) C300 , E58C E56E ! (44)
E58C ; EXIT C102 , ()
E58E notrace

b.

trace
forth: 20 constant BL
notrace

The output:
C342 forth: ()
C342 20 (20)
C342 constant
 (20) (20)
C342 <<<<< BL >>>>>
C342 C320 , C342 0200 ! (20)
C344 81 c, 82 c, "BL" m, DOCON C19E , 0020 , ()
C34C notrace

c.

trace
forth: code EXIT
LABEL-AMSTERDAM rp)+ ip mov NEXT end-code
extra: code ?EXIT (flag --)
 #0 tos cmp sp)+ tos mov =? AMSTERDAM label-until,
 NEXT end-code
notrace

The output:
C0FA forth: ()
C0FA code ()
C0FA <<<<< EXIT >>>>>
C0FA 0000 , C0FA 0202 ! ()
C0FC 81 c, 84 c, "EXIT" m, C104 , (55)
C104 LABEL-AMSTERDAM (55)
C104 rp (55 1)
C104)+ (55 1 -3)
C104 ip (55 1 -3 5)
C104 mov 4135 , (55)
C106 NEXT 4F00 , (55)
C108 end-code ()
C108 extra: ()
C108 code ()
C108 <<<<< ?EXIT >>>>>
C108 C0E6 , C108 0204 ! ()
C10A 83 c, 85 c, "?EXIT" m, FF c, C114 , (55)
C114 ((55)
C114 #0 (55 3)
C114 tos (55 3 7)
C114 cmp 9307 , (55)
C116 sp (55 4)
C116)+ (55 4 -3)
C116 tos (55 4 -3 7)
C116 mov 4437 , (55)
C118 =? (55 2000)
C118 AMSTERDAM (55 2000 C104)
C118 label-until, 23F5 , (55)
C11A NEXT 4F00 , (55)
C11C end-code ()
C11C notrace

13. The kangaroo method

In the newer noForth versions (november 2017) we use the "kangaroo method" for
defining words and compiler words.

a. Defining words

DOES> parts remain unnamed. We put them in the body of the defining word.
Example:

code CONSTANT
tos sp -) mov w) tos mov NEXT end-code \ This is docon

This code can be compiled in an early stage of the metacompilation process. Now the
metacompiler is able to build constants in the image because the address of DOCON is
known. This CONSTANT will never be executed by the metacompiler, it is used by the
red metacompiler word CONSTANT in order to obtain the addresse of DOCON.

20 CONSTANT BL

Later on in the target we overwrite the code field of CONSTANT with the address of its
CREATE action as a DOES> routine (noForth is indirect threaded).

TELL constant \ put CHERE in the code field of CONSTANT
TO-DO: \ prepare a DOES> part
header , \ header + DOCON
, \ the constant itself
reveal ;

When CONSTANT is executed in the living noForth this TO-DO: code will be executed
with the DOCON address on the stack! Similarly for other defining words.
Now we need no headers for doers and we have no forward references. A side effect is
still that a noForth decompiler easily detects word types.

Decompiler output:
see bl
C32C z C17A --- BL (CONSTANT)
C32E 20

' constant @ msee
DFB8 12B0
DFBA N C14E (DOES>)
DFBC : DB3A HEADER
DFBE CDC6 ,
DFC0 8 D738 REVEAL
DFC2 CDC6 ,
DFC4 B C142 (;)

' constant >body mdas
C17A: $ 8324 #2 sp SUB
C17C: G 4784 tos 0 sp x) MOV
C17E: 0
C180: 'F 4627 w) tos MOV
C182: 6E 4536 ip)+ w MOV
C184: 0F 4630 w)+ pc MOV --->>

In the decompiler (ccc) can be read as: this is the body address of 'ccc'.

b. Compiler words

To save space we use the kangaroo method also for compiler words. Example:

create LITERAL immediate
NONAME \ start a noname code definition
tos sp -) mov ip)+ tos mov
NEXT end-code

The body of LITERAL now contains the LIT-code as a noname-primitive. Later on the
codefield of LITERAL will be overwritten with the compile action for LITERAL as a
DOES> routine:

TELL literal TO-DO:
state @
if , \ compile LIT
 , \ compile the number
 exit
then drop ; \ drop LIT-token

Remember that this LITERAL (when executed in noForth) finds the token of LIT on the
stack.

This means that also auxiliary words for compiler words need no headers. The
decompiler nicely shows those auxiliary words as the defining word or compiler word
in question within 'airy' parenthesis. Example of decompiler output:
see m,
CDEE f C166 --- M, (:)
CDF0 CB8E BOUNDS
CDF2 C2AC (?DO)
CDF4 CDFE
CDF6 C30C I
CDF8 V C556 C@
CDFA CDDA C,
CDFC C2E6 (LOOP)
CDFE B C142 (;)

Remember that in the decompiler (ccc) can be read as: this is the body address of
'ccc'.

*

